Covers of Elliptic Curves and the Moduli Space of Stable Curves

نویسنده

  • DAWEI CHEN
چکیده

Consider genus g curves that admit degree d covers of an elliptic curve. Varying a branch point, we get a one-parameter family W of simply branched covers. Varying the target elliptic curve, we get another one-parameter family Y of covers that have a unique branch point. We investigate the geometry of W and Y by using admissible covers to study their slopes, genera and components. The results can be applied to study slopes of effective divisors on the moduli space of stable genus g curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simply Branched Covers of an Elliptic Curve and the Moduli Space of Curves

Consider genus g curves that admit degree d covers to an elliptic curve simply branched at 2g − 2 points. Vary a branch point and the locus of such covers forms a one-parameter family W . We investigate the geometry of W by using admissible covers to study its slope, genus and components. The results can also be applied to study slopes of effective divisors on the moduli space of genus g curves.

متن کامل

Covers of Elliptic Curves and the Lower Bound for Slopes of Effective Divisors on Mg

Consider genus g curves that admit degree d covers to elliptic curves only branched at one point with a fixed ramification type. The locus of such covers forms a one parameter family Y that naturally maps into the moduli space of stable genus g curves Mg. We study the geometry of Y , and produce a combinatorial method by which to investigate its slope, irreducible components, genus and orbifold...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Covers of the Projective Line and the Moduli Space of Quadratic Differentials

Consider the Hurwitz space parameterizing covers of P branched at four points. We study its intersection with divisor classes on the moduli space of curves. As applications, we calculate the slope of Teichmüller curves parameterizing square-tiled cyclic covers. In addition, we come up with a relation among the slope of Teichmüller curves, the sum of Lyapunov exponents and the Siegel-Veech const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009